ESTIMATING EARTHWORK

Estimating Earthwork

Earthwork includes:

- 2. Grading: Moving earth to change elevation
- 3. Temporary shoring
 - ♦ 4. Back fill or fill: Adding earth to raise grade
 - 5. Compaction: Increasing density
 - 6. Disposal

Productivity Factors

A. Job conditions

↑ Material type

Water level and moisture content

Yhaul road condition (accessibility and load restrictions)

Productivity Factors (cont.)

- B. Management conditions
 - YEquipment conditions and maintenance practices

 - → Planning, supervision and coordination of work.

Job Efficiency Factors for Earthmoving Operations

	Management Conditions*			
Job Condit ions**	Excellent	Good	Fair	Poor
Excellent	0.84	0.81	0.76	0.70
Good	0.78	0.75	0.71	0.65
Fair	0.72	0.69	0.65	0.60
Poor	0.63	0.61	0.57	0.52

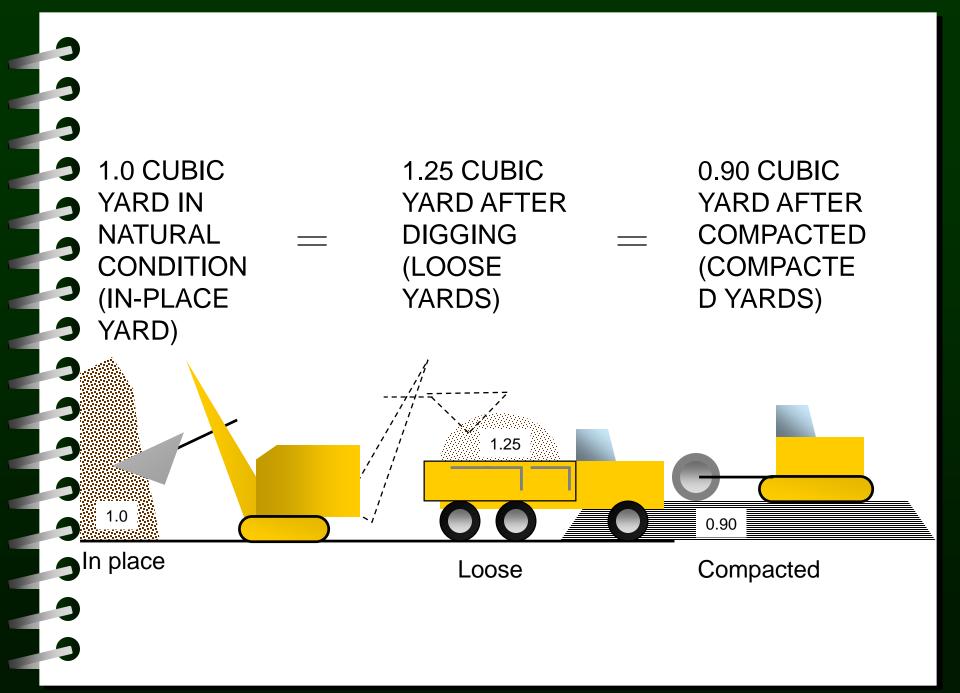
Units of Measure

Cubic Yard (bank, loose, or

compacted)

Bank (BCY): Mat erials in its nat ural

st at e before dist urbance


(in-place, in-sit u)

Loose (LCY): Material that has been

compact ed or dist urbed

or loaded

Compact ed (CCY): Mat erial aft er compact ion

Volume

Bank: V_B

→ Bank cubic yards (BCY)

↑ Density B Lb /BCY

Loose: V_I

↑ Loose cubic yards (LCY)

↑ Density L Lb/LCY

Compacted: V_c

\[
 \gamma \text{Compacted cubic yards (CCY)}
 \]

↑Density C LB/CCY

```
Swell:
```

A soil increase in volume when it is excavated.

A soil increase in volume when it is $\frac{\text{Bank density}}{\text{Swell (\%)}} = \frac{\text{Boose density}}{\text{Loose density}} - 1) \times 100$

Bank Volume = Loose volume x Load factor

Shrinkage:

A soil decreases in volume when it is compacted

Shrinkage (%) =
$$\frac{\text{Bank density}}{\text{Compacted density}}$$

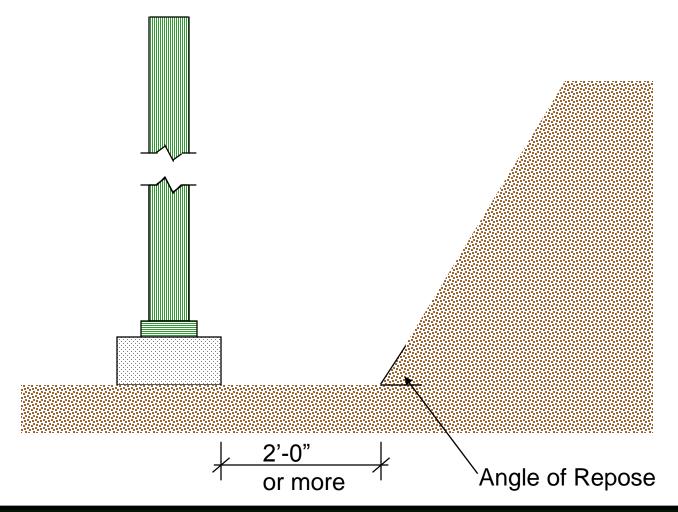
Shrinkage factor = 1 - Shrinkage

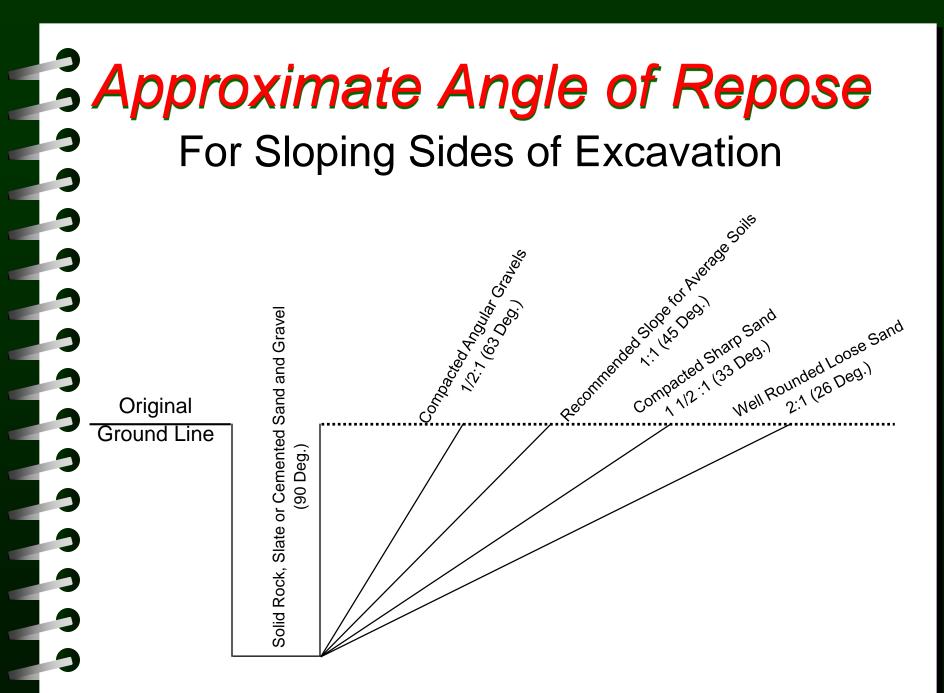
Compacted volume

= Bank volume x Shrinkage factor

Approximate Material Characteristics

	Loose	Bank	Swell	Load
Mat erial	(lb/cy)	(lb/cy)	(%)	Fact or
Clay, dry	2,100	2,650	26	0.79
Clay, wet	2,700	3,575	32	0.76
Clay and gravel, dry	2,400	2,800	17	0.85
Clay and gravel, wet	2,600	3,100	17	0.85
Earth, dry	2,215	2,850	29	0.78
Earth, moist	2,410	3,080	28	0.78
Earth, wet	2,750	3,380	23	0.81
Gravel, wet	2,780	3,140	13	88.0
Gravel, dry	3,090	3,620	17	0.85
Sand, dry	2,600	2,920	12	0.89
Sand, wet	3,100	3,520	13	88.0
Sand and gravel, dry	2,900	3,250	12	0.89
Sand and gravel, wet	3,400	3,750	10	0.91


Exact values will vary with grain size, moisture content, compaction, etc. Test to determine exact values for specific


Prof Awad S. Hanna

Typical Soil Volume Conversion Factors

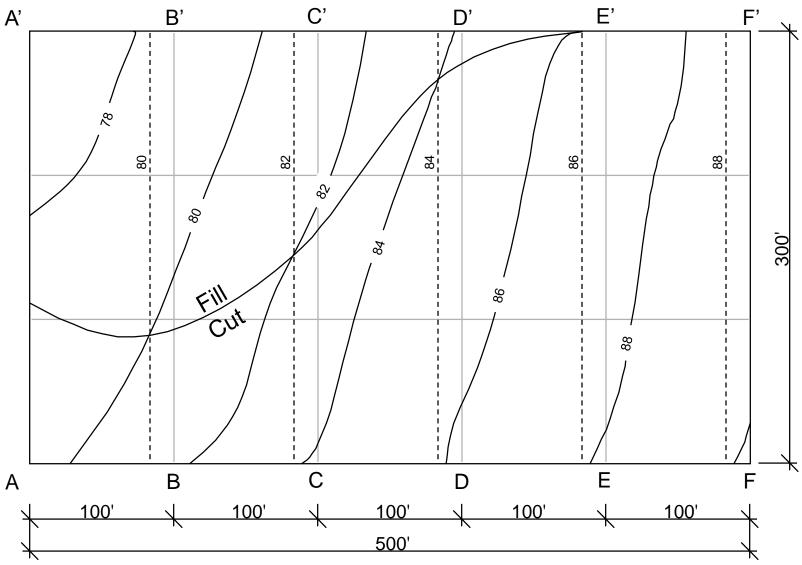
	Init ial		Convrt ed t o:	
Soil Type	Soil Condition	Bank	Loose	Compact ed
Clay	Bank	100	1.27	0.90
	Loose	0.79	1.00	0.71
	Compact ed	1.11	1.41	1.00
Common earth	Bank	1.00	1.25	0.90
	Loose	0.80	100	0.72
	Compact ed	1.11	139	1.00
Rock (blast ed)	Bank	1.00	1.50	1.30
	Loose	0.67	100	0.87
	Compact ed	0.77	1.15	1.00
Sand	Bank	1.00	1.12	0.95
	Loose	0.89	100	0.85
	Compact ed	1.05	1.18	100

Estimating Earth work for Trenches and Foundation

Calculating Earthwork Quantities

- 1.End Area Method
- 2. Contour Line/ Grid Method

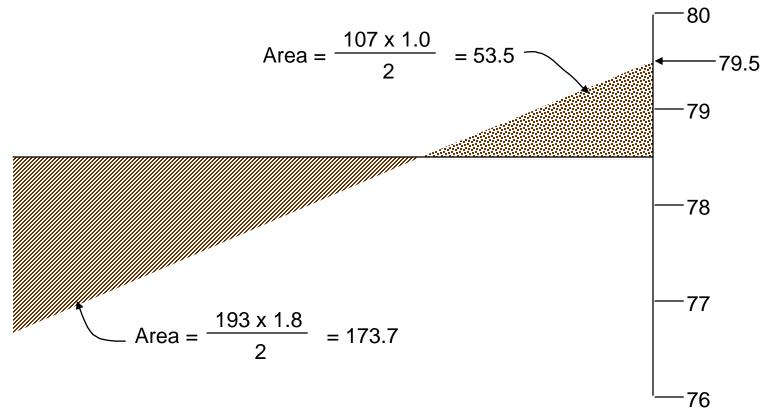
1. End Area Method


Used in sites where length is much greater than width

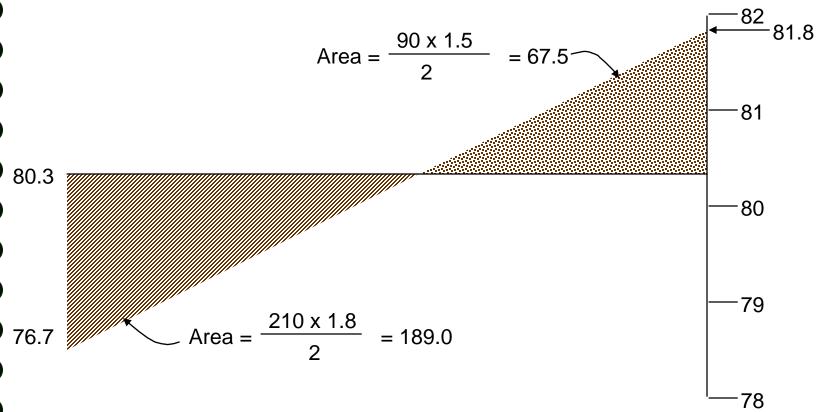
CALCULATING EARTHWORK QUANTITIES

1. End Area Method

- a. Take cross-sections at regular intervals, typically, 100' intervals.
- b. Calculate the cross-section end areas
- c. The volume of earthwork between sections is obtained by taking the average of the end areas at each station in square feet multiplied by the distance between sections in feet and dividing by 27 to obtain the volume in cubic yards.


Project Site Showing 100 Stations

78.5 — Sec. A'- A ---- 78 ---- 76 ---- 82 Sec. B'- B 80.3 -___80 ---- 78 ----- 84 Sec. C'- C 82.3 -___80 ----- 86 Sec. D'- D Sec. E'- E **—** 90 Sec. F'- F **—** 88


----80

Cross-Section @ A - A

Section A'- A

5 5 5 5 5 5 7 6.7 Cross-Section @ B - B Area = $\frac{90 \times 1.5}{2}$ = 67.5

Section B'- B

Table 1. Cumulative Earthwork Quantities

Sect ion	Emb (CCY)	Exc. (BCY)	Exc. x B/C	Net Exc.	Cum Exc
			(CCY)	(CCY)	(CCY)
A-B	672	224	254	- 418	- 418
B-C	567	441	499	- 68	- 486
C-D	215	791	896	681	195
D-E	0	1031	1167	1167	1362
E-F	0	1222	1384	1384	2746

2. Contour Line/ Grid Method

- Used for parking lots and site "leveling"
- Grid size from 10'x10' to 50'x50'
- the greater the terrain variance the smaller the grid

2. CONTOUR LINE/GRID CELL METHOD(cont.)

Step I

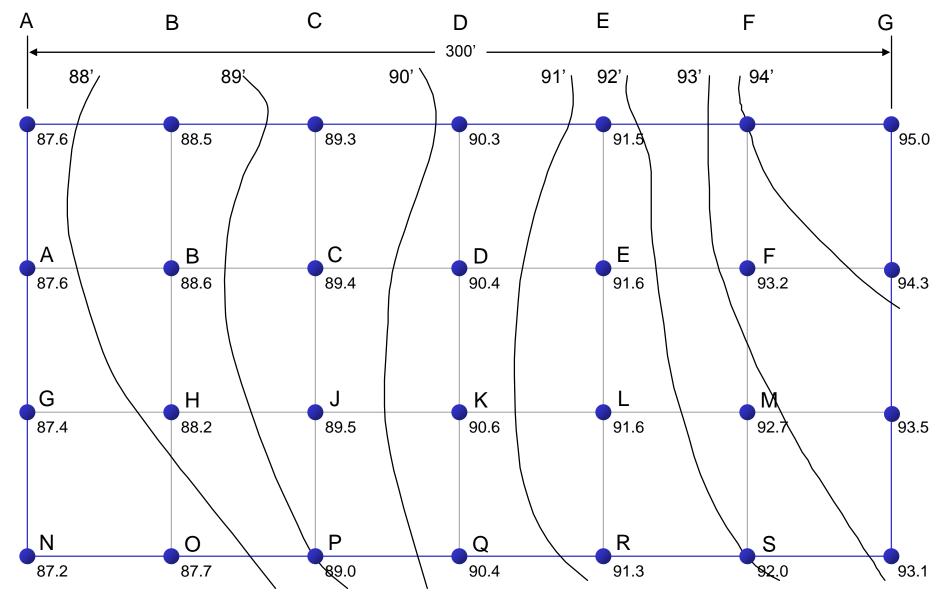
Determine by visual study of the site drawing if the net total will be an import (more fill required than cut) an export (less fill required than cut) or a blend (cut and fill about equal)

Step 2

Determine the pattern of calculation points or grid size.

Step 3

Determine elevations at each calculation location, the corners of each grid.

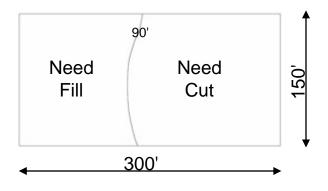

Step 4

Calculate the cubic yards of cut or fill required in each grid cell.

Step 5

Add the individual Grid Cell quantities together to arrive at the total cut, total fill volume and the import or volume export vardage required for the job.

Prof Awad S. Hanna


No Scale

Notes:

- 1. Bring the entire site to elevation 90.
- 2. All grids are 50'x 50' = 2500 sq. ft.
- 3. Present contours

Purpose

Grade the entire site to grade 90'

Quick and Dirty

Assume one grid

Existing 90.50

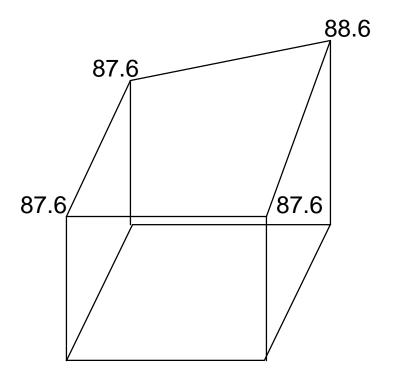
Proposed 90.00

Cut 0.50

Total Cost
$$=\frac{150 \times 300 \times 0.50}{27} = 833CY$$

If we choose the grid size to be 50'x50'

Average elevation


$$=\frac{87.6+88.5+87.6+88.6}{4}$$

$$= 88.08$$

change
$$= 90-88.08$$

$$= 1.92$$

and so on.

